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1. MOTIVATION



RANDOM WALK ON A PERCOLATION CLUSTER

Bond percolation on integer lattice Z
d (d ≥ 2), parameter p ∈

(0,1). E.g. p = 0.53,

If p > pc(d), then the random walk is diffusive for P-a.e. envi-

ronment. In particular,
(

n−1XC
tn2

)

t≥0
→
(

Bc(d,p)t

)

t≥0
.

See [Sidoravicius/Sznitman 2004, Biskup/Berger 2007, Math-

ieu/Piatnitski 2007], and also heat kernel estimates of [Barlow

2004].



PERCOLATION AT CRITICALITY?

Part of the (near-)critical percolation infinite cluster. Source:

Ben Avraham/Havlin.



INCIPIENT INFINITE CLUSTER

At p = pc(d), it is partially confirmed that there is no infinite

cluster. Instead, study the random walk on the ‘incipient infinite

cluster’:
C0|{|C0| = n} → IIC.

Constructed in [Kesten 1986] for d = 2, [van der Hofstad/Jarai

2004] for high dimensions.

‘Dead-ends’

‘Backbone’

Tree-like in high dimensions [Hara/Slade 2000], see also [Hey-

denreich, van der Hofstad/Hulsfhof/Miermont 2017].



SRW ON PERCOLATION AT CRITICALITY?

Random walk is subdiffusive for d = 2 and in high-dimensions

[Kesten 1986, Nachmias/Kozma 2009], see also [Heydenreich/

van der Hofstad/Hulshof 2014].

For example, for almost-every-realisation of the IIC in high-

dimensions, we have:

logEIIC
0 τ(R)

logR
→ 3,

where τ(R) = inf{n : dIIC(0, X
IIC
n ) = R}, and

logEIIC
0 τ̃(R)

logR
→ 6,

where τ̃(R) = inf{n : |0−XIIC
n | = R}.

Scaling limit?



E.G. CRITICAL GALTON-WATSON TREES

Let Tn be a Galton-Watson tree with a critical (mean 1), ape-
riodic, finite variance offspring distribution, conditioned to have
n vertices, then

n−1/2Tn → T ,

where T is (up to a constant) the Brownian continuum ran-
dom tree (CRT) [Aldous 1993], also [Duquesne/Le Gall 2002].

Convergence in Gromov-Hausdorff-Prohorov topology implies
(

n−1/2XTn
n3/2t

)

→
(

XT
t

)

t≥0
,

see [Krebs 1995], [C. 2008] and [Athreya/Löhr/Winter 2014].



SOME INTUITION

Suppose T is a graph tree, and XT is the discrete time simple

random walk on T , π({x}) = degT (x) its invariant measure. The

following two properties are then easy to check:

x
bT

z

y

- [Scale] For x, y, z ∈ T ,

PT
z (σx < σy) =

dT (bT (x, y, z), y)

dT (x, y)
.

- [Speed] Expected number of visits to z when started at x and

killed at y,

dT (bT (x, y, z), y)π({z}).

Analogous properties hold for limiting diffusion.

cf. One-dimensional convergence results of [Stone 1963].



OTHER INTERESTING EXAMPLES

[Critical random graph] For largest con-

nected component Cn1 of G(n,1/n):
(

Cn1 , n
−1/3Rn, n

−2/3µn
)

→ (F,R, µ) ,

cf. [Addario-Berry, Broutin, Goldschmidt

2012]. We will show it follows that
(

n−1/3Xn
tn

)

t≥0
→ (Xt)t≥0 .

[Uniform spanning tree in two dimensions]

Can check that:
(

n−5/4XUST
tn13/4

)

t≥0
→ (Xt)t≥0 .



SELF-SIMILAR FRACTALS

Many of the techniques we will see are useful for random graphs/

fractals were developed for self-similar ones. E.g. [Barlow/

Perkins 1988] constructed a diffusion on the Sierpinski gasket

via approximation by SRW:
(

2−nXn
t5n
)

t≥0
→ (Xt)t≥0 .

This result can also be understood via the resistance metric,

e.g. [Kigami 2001].



RANDOM CONDUCTANCE MODEL

AND BOUCHAUD TRAP MODEL

Random conductance model (RCM):

Equip edges of graphs with random weights (c(x, y)) such that

P(c(x, y) ≥ u) = u−α, ∀u ≥ 1,

for some α ∈ (0,1). Subdiffusive scaling limit for associated RW

on the integer lattice [Barlow/Cerny 2011, Cerny 2011].

Symmetric Bouchaud trap model (BTM):

Add exponential holding times, mean τx, to vertices. In the case

where τ is random and heavy-tailed, behaviour similar to RCM.



OUTLINE

[and references]

1. Motivation

2. Random walks and the resistance metric on finite graphs

[Doyle/Snell 1984, Levin/Peres/Wilmer 2009, Lyons/Peres 2016]

3. Stochastic processes associated with resistance metrics

[Kigami 2001, 2012]

4. Convergence results

[C./Hambly/Kumagai 2017, C. 2017+]

5. Applications



RANDOM WALKS ON GRAPHS

Let G = (V,E) be a finite, connected graph, equipped with

(strictly positive, symmetric) edge conductances (c(x, y)){x,y}∈E.

Let µ be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator ∆,

as defined by:

(∆f)(x) :=
1

µ({x})

∑

y: y∼x
c(x, y)(f(y)− f(x)).

NB. Common choices for µ are:

- µ({x}) :=
∑

y: y∼x c(x, y), the constant speed random walk

(CSRW);

- µ({x}) := 1, the variable speed random walk (VSRW).



DIRICHLET FORM AND RESISTANCE METRIC

Define a quadratic form on G by setting

E(f, g) =
1

2

∑

x,y:x∼y
c(x, y) (f(x)− f(y)) (g(x)− g(y)) .

Note that (regardless of the particular choice of µ,) E is a Dirich-

let form on L2(µ), and

E(f, g) = −
∑

x∈V

(∆f)(x)g(x)µ({x}).

Suppose we view G as an electrical network with edges assigned

conductances according to (c(x, y)){x,y}∈E. Then the effective

resistance between x and y is given by

R(x, y)−1 = inf {E(f, f) : f(x) = 1, f(y) = 0} .

R is a metric on V , e.g. [Tetali 1991], and characterises the

weights (and therefore the Dirichlet form) uniquely [Kigami 1995].



SUMMARY

RANDOM WALK X WITH GENERATOR ∆

l

DIRICHLET FORM E on L2(µ)

l

RESISTANCE METRIC R AND MEASURE µ



RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F be a set. A function R : F ×F → R is a resistance metric

if, for every finite V ⊆ F , one can find a weighted (i.e. equipped

with conductances) graph with vertex set V for which R|V×V is

the associated effective resistance.



EXAMPLES

- Effective resistance metric on a graph;

- One-dimensional Euclidean (not true for higher dimensions);

- Any shortest path metric on a tree;

- Resistance metric on a Sierpinski gasket, where for ‘vertices’

of limiting fractal, we set

R(x, y) = (3/5)nRn(x, y),

then use continuity to extend to whole space.



RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one corre-

spondence between resistance metrics and a class of quadratic

forms called resistance forms.

The relationship between a resistance metric R and resistance

form (E,F) is characterised by

R(x, y)−1 = inf {E(f, f) : f ∈ F , f(x) = 1, f(y) = 0} .

Moreover, if (F,R) is compact, then (E,F) is a regular Dirichlet

form on L2(µ) for any finite Borel measure µ of full support.

(Version of the statement also hold for locally compact spaces.)



RESISTANCE FORM DEFINITION,

e.g. [KIGAMI 2012]

[RF1] F is a linear subspace of the collection of functions {f :

F → R} containing constants, and E is a non-negative symmetric

quadratic form on F such that E(f, f) = 0 if and only if f is

constant on F .

[RF2] Let ∼ be the equivalence relation on F defined by saying

f ∼ g if and only if f − g is constant on F . Then (F/ ∼, E) is a

Hilbert space.

[RF3] If x 6= y, then there exists an f ∈ F such that f(x) 6= f(y).

[RF4] For any x, y ∈ F ,

sup

{

|f(x)− f(y)|2

E(f, f)
: f ∈ F , E(f, f) > 0

}

< ∞.

[RF5] If f̄ := (f ∧ 1) ∨ 0, then f ∈ F and E(f̄ , f̄) ≤ E(f, f) for

any f ∈ F.



SUMMARY

RESISTANCE METRIC R AND MEASURE µ

l

RESISTANCE FORM (E,F), DIRICHLET FORM on L2(µ)

l

STRONG MARKOV PROCESS X WITH GENERATOR ∆,

where

E(f, g) = −
∫

F
(∆f)gdµ.



A FIRST EXAMPLE

Let F = [0,1], R = Euclidean, and µ be a finite Borel measure

of full support on [0,1]. Define

E(f, g) =
∫ 1

0
f ′(x)g′(x)dx, ∀f, g ∈ F ,

where F = {f ∈ C([0,1]) : f is abs. cont. and f ′ ∈ L2(dx)}.
Then (E,F) is the resistance form associated with ([0,1], R).

Moreover, (E,F) is a regular Dirichlet form on L2(µ). Note that

E(f, g) = −
∫ 1

0
(∆f)(x)g(x)µ(dx), ∀f ∈ D(∆), g ∈ F ,

where ∆f = d
dµ

df
dx, and D(∆) contains those f such that: f ′

exists and df ′ is abs. cont. w.r.t. µ, ∆f ∈ L2(µ), and f ′(0) =

f ′(1) = 0.

If µ(dx) = dx, then the Markov process naturally associated with

∆ is reflected Brownian motion on [0,1].



3. CONVERGENCE OF RESISTANCE METRICS AND

STOCHASTIC PROCESSES



MAIN RESULT [C. 2016]

Write Fc for the space of marked compact resistance metric

spaces, equipped with finite Borel measures of full support. Sup-

pose that the sequence (Fn, Rn, µn, ρn)n≥1 in Fc satisfies

(Fn, Rn, µn, ρn) → (F,R, µ, ρ)

in the (marked) Gromov-Hausdorff-Prohorov topology for some

(F,R, µ, ρ) ∈ Fc.

It is then possible to isometrically embed (Fn, Rn)n≥1 and (F,R)

into a common metric space (M,dM) in such a way that

Pn
ρn

(

(Xn
t )t≥0 ∈ ·

)

→ Pρ

(

(Xt)t≥0 ∈ ·
)

weakly as probability measures on D(R+,M).

Holds for locally compact spaces if lim supn→∞Rn(ρn, BRn(ρn, r)
c)

diverges as r → ∞. (Can also include ‘spatial embeddings’.)



PROOF IDEA 1: RESOLVENTS

For (F,R, µ, ρ) ∈ Fc, let

Gxf(y) = Ey

∫ σx

0
f(Xs)ds

be the resolvent of X killed on hitting x. NB. Processes associ-

ated with resistance forms hit points.

We have [Kigami 2012] that

Gxf(y) =

∫

F
gx(y, z)f(z)µ(dz),

where

gx(y, z) =
R(x, y) +R(x, z)−R(y, z)

2
.

Metric measure convergence ⇒ resolvent convergence ⇒ semi-

group convergence ⇒ finite dimensional distribution convergence.



PROOF IDEA 2: TIGHTNESS

Using that X has local times (Lt(x))x∈F,t≥0, and

EyLτA(z) = gA(y, z) =
R(y,A) +R(z,A)−RA(y, z)

2
,

can establish via Markov’s inequality a general estimate of the

form:

sup
x∈F

Px

(

sup
s≤t

R(x,Xs) ≥ ε

)

≤
32N(F, ε/4)

ε

(

δ +
t

infx∈F µ(BR(x, δ))

)

,

where N(F, ε) is the minimal size of an ε cover of F .

Metric measure convergence ⇒ estimate holds uniformly in n ⇒

tightness (application of Aldous’ tightness criterion).

Similar estimate also gives non-explosion in locally compact case.



4. APPLICATIONS



TREES

For any sequence of graph trees (Tn)n≥1 such that

(V (Tn), anRn, bnµn) → (T , R, µ) ,

it holds that
(

a−1
n Xtanbn

)

t≥0
→ (Xt)t≥0 .

- Critical Galton-Watson trees with finite variance conditioned
on size, an = n1/2, bn = n.
- Uniform spanning tree in two dimensions, an = n5/4, bn = n2,
e.g. after 5,000 and 50,000 steps (picture: Sunil Chhita).

- Many other interesting models...



CONJECTURE FOR CRITICAL PERCOLATION

Bond percolation on integer lattice Z
d:

At criticality p = pc(d) in high dimensions, incipient infinite

cluster (IIC) conjectured to have same scaling limit as Galton-

Watson tree, e.g. [Hara/Slade 2000]. So, expect
(

IIC, n−2RIIC, n
−4µIIC

)

to converge, and thus obtain scaling limit for random walks. cf.

recent work of [Ben Arous, Fribergh, Cabezas 2016] for branch-

ing random walk. NB. Diffusion scaling limit constructed in [C.

2009].



RANDOM WALK SCALING ON CRITICAL RANDOM

GRAPH

Consider largest connected component Cn1 of G(n,1/n):

It holds that:
(

Cn1 , n
−1/3Rn, n

−2/3µn
)

→ (F,R, µ) ,

cf. [Addario-Berry, Broutin, Goldschmidt 2012]. Hence, as in

[C. 2012],
(

n−1/3Xn
tn

)

t≥0
→ (Xt)t≥0 .



HEAVY-TAILED RCM ON FRACTALS #1

Suppose that P(c(x, y) ≥ u) = u−α for u ≥ 1 and some α ∈ (0,1).
For gaskets, can then check that resistance homogenises [C.,
Hambly, Kumagai 2016]

(

Vn, (3/5)
nRn,3

−nµn
)

→ (F,R, µ) ,

where:
-(up to a deterministic constant) R is the standard resistance,
- µ is a Hausdorff measure on fractal.
Hence VSRW converges to Brownian motion (spatial scaling
assumes graphs already embedded into limiting fractal):

(Xn
t5n)t≥0 → (Xt)t≥0 .



HEAVY-TAILED RCM ON FRACTALS #2

It further holds that

νn := 3−n/α
∑

x∈Vn

c(x)δx → ν =
∑

i

viδxi,

in distribution, where {(vi, xi)} is a Poisson point process with in-

tensity cv−1−αdvµ(dx). Hence CSRW (and discrete time random

walk) converges:
(

X
n,νn
t(5/3)n3n/α

)

t≥0
→ (Xν

t )t≥0 ,

where the limiting process Xν is the Fontes-Isopi-Newman

(FIN) diffusion on the limiting fractal.

Similarly scaling result for heavy-tailed Bouchaud trap model.



HEAT KERNEL ESTIMATES FOR FIN DIFFUSION

If µ(Bd(x, r)) ≍ rdf , d(x, y) ≍ R(x, y)β, then heat kernel is of

form:

E (pνt (x, y)) ≍ c1t
−ds/2 exp











−c2

(

d(x, y)dw

t

)

1
dw−1











,

where

dw :=
df

α
+

1

β
, ds :=

2df

αdw
.

NB. Can only prove for α > αc.

Almost-surely (for any α ∈ (0,1)):

Log fluctuations above diagonal locally (O(1) globally);

Loglog fluctuations below diagonal locally (log globally);

No fluctuations in off-diagonal decay term.


