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1. MOTIVATION



RANDOM WALK ON A PERCOLATION CLUSTER

Bond percolation on integer lattice 74 (d > 2), parameter p €
(0,1). E.g. p=0.53,

[ ]

If p > pe(d), then the random walk is diffusive for P-a.e. envi-
ronment. In particular,

(n_lenQ)tZO — <Bc(d’p)t)t20 .

See [Sidoravicius/Sznitman 2004, Biskup/Berger 2007, Math-

ieu/Piatnitski 2007], and also heat kernel estimates of [Barlow
2004].




PERCOLATION AT CRITICALITY?

Part of the (near-)critical percolation infinite cluster. Source:
Ben Avraham/Havlin.



INCIPIENT INFINITE CLUSTER

At p = pc(d), it is partially confirmed that there is no infinite
cluster. Instead, study the random walk on the ‘incipient infinite
Cluster’:

Col{|Co| = n} — IIC.
Constructed in [Kesten 1986] for d = 2, [van der Hofstad/Jarai
2004] for high dimensions.

| < ‘Dead-ends’

<«——'Backbone’

Tree-like in high dimensions [Hara/Slade 2000], see also [Hey-
denreich, van der Hofstad/Hulsfhof/Miermont 2017].



SRW ON PERCOLATION AT CRITICALITY?

Random walk is subdiffusive for d = 2 and in high-dimensions
[Kesten 1986, Nachmias/Kozma 2009], see also [Heydenreich/
van der Hofstad/Hulshof 2014].

For example, for almost-every-realisation of the IIC in high-
dimensions, we have:

log E{CT(R) 3
log R -
where 7(R) = inf{n : d;;0(0, X11¢) = R}, and
log E{ICF(R) .
log R o

where 7(R) = inf{n : |0 — X1I¢| = R}.

Scaling limit?



E.G. CRITICAL GALTON-WATSON TREES

Let T;, be a Galton-Watson tree with a critical (mean 1), ape-
riodic, finite variance offspring distribution, conditioned to have
n vertices, then

where 7 is (up to a constant) the Brownian continuum ran-
dom tree (CRT) [Aldous 1993], also [Duquesne/Le Gall 2002].
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Convergence in Gromov-Hausdorff-Prohorov topology implies

(n—l/Qng/Qt) N (XtT)tZO ,

see [Krebs 1995], [C. 2008] and [Athreya/Lohr/Winter 2014].



SOME INTUITION

Suppose T is a graph tree, and X7T is the discrete time simple
random walk on T, w({x}) = degp(x) its invariant measure. The

following two properties are then easy to check: Z

Yy
- [Scale] For z,y,z € T,

br
dr(br(x,vy, z), x
PT (04 < o) = r(br(2,y,2),y)
dr(z,y)

- [Speed] Expected number of visits to z when started at x and

killed at y,
dT(bT(CE, Y, Z)o y)ﬂ'({Z}>

Analogous properties hold for limiting diffusion.

cf. One-dimensional convergence results of [Stone 1963].



OTHER INTERESTING EXAMPLES

[Critical random graph] For largest con-

nected component C} of G(n,1/n): e

cf. [Addario-Berry, Broutin, Goldschmidt :
2012]. We will show it follows that

(n_1/3XZ7h)t>o — (Xt)¢>0-

[Uniform spanning tree in two dimensions]

zﬁ%ﬁ% Can check that:
w% ”?ég ( —5/4 x 31%7/4)00_)()(01520-




SELF-SIMILAR FRACTALS

Many of the techniques we will see are useful for random graphs/
fractals were developed for self-similar ones. E.g. [Barlow/
Perkins 1988] constructed a diffusion on the Sierpinski gasket

via approximation by SRW:

(Q_RX%n>tZO — (Xt)¢>0-

This result can also be understood via the resistance metric,
e.g. [Kigami 2001].



RANDOM CONDUCTANCE MODEL
AND BOUCHAUD TRAP MODEL

Random conductance model (RCM):

Equip edges of graphs with random weights (c¢(x,vy)) such that

P(C(JZ,@/) Z ’LL) — u_aa Vu Z 17

for some o € (0,1). Subdiffusive scaling limit for associated RW
on the integer lattice [Barlow/Cerny 2011, Cerny 2011].

Symmetric Bouchaud trap model (BTM):

Add exponential holding times, mean 7, to vertices. In the case
where 7 is random and heavy-tailed, behaviour similar to RCM.



OUTLINE
[and references]

1. Motivation

2. Random walks and the resistance metric on finite graphs
[Doyle/Snell 1984, Levin/Peres/Wilmer 2009, Lyons/Peres 2016]

3. Stochastic processes associated with resistance metrics
[Kigami 2001, 2012]

4. Convergence results
[C./Hambly/Kumagai 2017, C. 2017+]

5. Applications



RANDOM WALKS ON GRAPHS

Let G = (V,FE) be a finite, connected graph, equipped with
(strictly positive, symmetric) edge conductances (c¢(x, y)){a:,y}EE'
Let 1 be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator A,
as defined by:

1 > clz,y)(f(y) — f(@)).

D=L, 2

NB. Common choices for u are:

- p({z}) = Xy gz c(z,y), the constant speed random walk
(CSRW);

- u({z}) := 1, the variable speed random walk (VSRW).



DIRICHLET FORM AND RESISTANCE METRIC

Define a quadratic form on G by setting

== T elay) (F@) - FW) (9(@) — 9()).

2 2y
Note that (regardless of the particular choice of u,) £ is a Dirich-
let form on L2(u), and

E(f,9) =— ) (Af)(x)g(x)u({x}).

xeV

Suppose we view G as an electrical network with edges assigned
conductances according to (c(x,y)){w,y}eE. Then the effective
resistance between z and y is given by

R(z,y)~ ' =inf{&(f,f): f(z) =1, f(y) =0}.
R is a metric on V, e.g. [Tetali 1991], and characterises the
weights (and therefore the Dirichlet form) uniquely [Kigami 1995].



SUMMARY

RANDOM WALK X WITH GENERATOR A

0

DIRICHLET FORM & on L2(w)

)

RESISTANCE METRIC R AND MEASURE u



RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F' be a set. A function R: FFx F — R is a resistance metric
if, for every finite V C F', one can find a weighted (i.e. equipped
with conductances) graph with vertex set V for which Ry «y is
the associated effective resistance.



EXAMPLES

- Effective resistance metric on a graph;

One-dimensional Euclidean (not true for higher dimensions);
- Any shortest path metric on a tree;

- Resistance metric on a Sierpinski gasket, where for ‘vertices’
of limiting fractal, we set

then use continuity to extend to whole space.




RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one corre-
spondence between resistance metrics and a class of quadratic
forms called resistance forms.

The relationship between a resistance metric R and resistance
form (&, F) is characterised by

R(z,y) "t =inf{&(f,f): f€F, f(z) =1, f(y) =0}.

Moreover, if (F, R) is compact, then (&, F) is a regular Dirichlet
form on L2(u) for any finite Borel measure p of full support.
(Version of the statement also hold for locally compact spaces.)



RESISTANCE FORM DEFINITION,
e.g. [KIGAMI 2012]

[RF1] F is a linear subspace of the collection of functions {f :
F — R} containing constants, and £ is a non-negative symmetric
quadratic form on F such that E(f,f) = 0O if and only if f is
constant on F.

[RF2] Let ~ be the equivalence relation on F defined by saying
f ~ g if and only if f —g is constant on F. Then (F/ ~,&) is a
Hilbert space.

[RF3] If x = y, then there exists an f € F such that f(z) #= f(vy).
[RF4] For any z,y € F,

. 2
Sup{|f(x£),(f ‘;()y)' - feF, E ) > o} < .

[RF5] If f := (fA1)VDO, then f € F and E(f, f) < E(f, f) for
any f e F.




SUMMARY
RESISTANCE METRIC R AND MEASURE u

0

RESISTANCE FORM (&, F), DIRICHLET FORM on L2(u)

0

STRONG MARKOV PROCESS X WITH GENERATOR A,
where

E(f,g) = — /F(Af)gdu-



A FIRST EXAMPLE

Let ' = [0,1], R = Euclidean, and u be a finite Borel measure
of full support on [0,1]. Define

1
£f.9)= [ f@9d@de,  VfgeF,

where F = {f € C([0,1]) : fis abs. cont. and f’ € L?(dx)}.
Then (&,F) is the resistance form associated with ([0, 1], R).
Moreover, (£, F) is a regular Dirichlet form on L?(x). Note that

1
£(t.9) = [ (AN@g@uldn),  VfeD(A), g€ F,
where Af = %%, and D(A) contains those f such that: f/

exists and df’ is abs. cont. w.r.t. u, Af € L?(w), and f/(0) =
f'(1) =0.

If u(dx) = dx, then the Markov process naturally associated with
A is reflected Brownian motion on [0, 1].



3. CONVERGENCE OF RESISTANCE METRICS AND
STOCHASTIC PROCESSES



MAIN RESULT [C. 2016]

Write F. for the space of marked compact resistance metric
spaces, equipped with finite Borel measures of full support. Sup-
pose that the sequence (Fpn, Rn, pin, pn)p>1 in Fc satisfies

(an Rna:unapn) — (Fo Raluap)

in the (marked) Gromov-Hausdorff-Prohorov topology for some
(Fa Rauap) < IEFC'

It is then possible to isometrically embed (Fy, Rn),>1 and (F, R)
into a common metric space (M,d,;) in such a way that

P (X0 € ) = Po (Xt)eso € )
weakly as probability measures on D(R., M).

Holds for locally compact spaces if lim sup,, oo Rn(pn, Br, (Pn,7)°)
diverges as r — oo. (Can also include ‘spatial embeddings’.)



PROOF IDEA 1: RESOLVENTS

For (F,R, u,p) € F¢, let

Gof(y) = By /OU” F(Xs)ds

be the resolvent of X killed on hitting x. NB. Processes associ-
ated with resistance forms hit points.

We have [Kigami 2012] that

Gaf () = [ 920y, DF(Ild2),

where
> .

gCB(y7 Z) —

Metric measure convergence = resolvent convergence = semi-
group convergence = finite dimensional distribution convergence.



PROOF IDEA 2: TIGHTNESS

Using that X has local times (L(x)),zcF >0, and

2 )
can establish via Markov's inequality a general estimate of the

form:

EyLr,(2) = ga(y,z) =

32N (F,c/4 t
sup Py (supR(w,Xs)Zéf) < (F.e/ )<5-|-. )
rEF s<t € inf,cr n(Br(x,6))

where N(F,¢) is the minimal size of an ¢ cover of F.

Metric measure convergence = estimate holds uniformly in n =
tightness (application of Aldous’ tightness criterion).

Similar estimate also gives non-explosion in locally compact case.



4. APPLICATIONS



TREES

For any sequence of graph trees (71y),>1 such that
(V(Tn), anBn, bpun) — (T, R, 1) ,
it holds that
(0 Xiantn) 0 Kdizo-

- Critical Galton-Watson trees with finite variance conditioned
on size, an = n1/2, b, = n.

- Uniform spanning tree in two dimensions, a, = n®/4, b, = n2,
e.g. after 5,000 and 50 OOO steps (picture' Sunil Chhita).

- Many other interestlng models...

%“?g




CONJECTURE FOR CRITICAL PERCOLATION

Bond percolation on integer lattice 74

bopr

]
SRESNRRNE

At criticality p = pc(d) in high dimensions, incipient infinite
cluster (IIC) conjectured to have same scaling limit as Galton-
Watson tree, e.g. [Hara/Slade 2000]. So, expect

(HC, n~?Ryc, n_4MIIC)
to converge, and thus obtain scaling limit for random walks. cf.
recent work of [Ben Arous, Fribergh, Cabezas 2016] for branch-

ing random walk. NB. Diffusion scaling limit constructed in [C.
2009].




RANDOM WALK SCALING ON CRITICAL RANDOM
GRAPH

Consider largest connected component C} of G(n,1/n):
s ﬂ' . 1ﬁﬂ '

(€, n 3Ry, 02 Py) — (F, R, ),

cf. [Addario-Berry, Broutin, Goldschmidt 2012]. Hence, as in
[C. 2012],

It holds that:

~1
(n /3X31>t>0 — (Xt)¢>0-



HEAVY-TAILED RCM ON FRACTALS #1

Suppose that P(ce(z,y) > u) =u *foru>1and somea € (0,1).
For gaskets, can then check that resistance homogenises [C.,
Hambly, Kumagai 2016]

(Vi, (3/5)"Rn, 3™ "n) — (F, R, 1),
where:
-(up to a deterministic constant) R is the standard resistance,
- 1 is a Hausdorff measure on fractal.
Hence VSRW converges to Brownian motion (spatial scaling
assumes graphs already embedded into limiting fractal):

(X?Sn)tzo — (Xt)>0-



HEAVY-TAILED RCM ON FRACTALS #2

It further holds that
v =370 S ()b o v =Y iy,
in distribution, where {(v;, z;)} is a Poisson point process with in-

tensity co~1~dvpu(dz). Hence CSRW (and discrete time random
walk) converges:

n,vn 1%
(Xt(5/3)n3n/a)t20 > Kz,

where the limiting process XY is the Fontes-Isopi-Newman
(FIN) diffusion on the limiting fractal.

Similarly scaling result for heavy-tailed Bouchaud trap model.



HEAT KERNEL ESTIMATES FOR FIN DIFFUSION

If w(By(z,m)) < r¥, d(z,y) < R(z,y)?, then heat kernel is of
form:

1
E (0! (2,1)) = ert—%/2 exp —02( ) ) |

t
where
df 1 Qdf
dy ‘= — + —, de i1 —m —~.
w o —I_B S adu

NB. Can only prove for o > ac.

Almost-surely (for any a € (0,1)):

Log fluctuations above diagonal locally (O(1) globally);
Loglog fluctuations below diagonal locally (log globally);
No fluctuations in off-diagonal decay term.



